Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
medRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076879

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 25% of the population and currently has no effective treatments. Plasma proteins with causal evidence may represent promising drug targets. We aimed to identify plasma proteins in the causal pathway of MASLD and explore their interaction with obesity. METHODS: We analysed 2,941 plasma proteins in 43,978 European participants from UK Biobank. We performed genome-wide association study (GWAS) for all MASLD-associated proteins and created the largest MASLD GWAS (109,885 cases/1,014,923 controls). We performed Mendelian Randomization (MR) and integrated proteins and their encoding genes in MASLD ranges to identify candidate causal proteins. We then validated them through independent replication, exome sequencing, liver imaging, bulk and single-cell gene expression, liver biopsies, pathway, and phenome-wide data. We explored the role of obesity by MR and multivariable MR across proteins, body mass index, and MASLD. RESULTS: We found 929 proteins associated with MASLD, reported five novel genetic loci associated with MASLD, and identified 17 candidate MASLD protein targets. We identified four novel targets for MASLD (CD33, GRHPR, HMOX2, and SCG3), provided protein evidence supporting roles of AHCY, FCGR2B, ORM1, and RBKS in MASLD, and validated nine previously known targets. We found that CD33, FCGR2B, ORM1, RBKS, and SCG3 mediated the association of obesity and MASLD, and HMOX2, ORM1, and RBKS had effect on MASLD independent of obesity. CONCLUSIONS: This study identified new protein targets in the causal pathway of MASLD, providing new insights into the multi-omics architecture and pathophysiology of MASLD. These findings advise further therapeutic interventions for MASLD.

2.
Drug Metab Dispos ; 49(12): 1038-1046, 2021 12.
Article in English | MEDLINE | ID: mdl-34548392

ABSTRACT

Most drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7. Samples from 58 children (48 ileums, 10 jejunums, age range: 8 weeks to 17 years) and 16 adults (8 ileums, 8 jejunums) were analyzed. When comparing age groups, BCRP, MDR1, PEPT1, and UGT1A1 abundance was significantly higher in adult ileum as compared with the pediatric ileum. Jejunal BCRP, MRP2, UGT1A1, and CYP3A4 abundance was higher in the adults compared with children 0-2 years of age. Examining the data on a continuous age scale showed that PEPT1 and UGT1A1 abundance was significantly higher, whereas MCT1 and UGT2B7 abundance was lower in adult ileum as compared with the pediatric ileum. Our data contribute to the deeper understanding of the ontogeny of small intestinal drug-metabolizing enzymes and drug transporters and shows DME-, DT-, and intestinal location-specific, age-related changes. SIGNIFICANCE STATEMENT: This is the first study that describes the ontogeny of small intestinal DTs and DMEs in human using liquid chromatography with tandem mass spectrometry-based targeted quantitative proteomics. The current analysis provides a detailed picture about the maturation of DT and DME abundances in the human jejunum and ileum. The presented results supply age-related DT and DME abundance data for building more accurate PBPK models that serve to support safer and more efficient drug dosing regimens for the pediatric population.


Subject(s)
Inactivation, Metabolic/physiology , Intestine, Small , Membrane Transport Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Adult , Age Factors , Biological Transport, Active , Child , Chromatography, Liquid/methods , Cytochrome P-450 CYP3A/metabolism , Enzyme Assays/methods , Gene Ontology , Glucuronosyltransferase/metabolism , Humans , Intestine, Small/drug effects , Intestine, Small/enzymology , Intestine, Small/metabolism , Metabolic Clearance Rate , Multidrug Resistance-Associated Protein 2/metabolism , Neoplasm Proteins/metabolism , Peptide Transporter 1/metabolism , Tandem Mass Spectrometry/methods
3.
Proteomics ; 16(15-16): 2206-20, 2016 08.
Article in English | MEDLINE | ID: mdl-27214876

ABSTRACT

The application of unit resolution tandem quadrupole and high-resolution orthogonal acceleration ToF mass spectrometers for the quantitation and translational analysis of proteolytic peptides is described. The MS platforms were contrasted in terms of sensitivity and linear response. Moreover, the selectivity of the platforms was investigated and the effect on quantitative precision studied. Chromatographic LC conditions, including gradient length and configuration, were investigated with respect to speed/throughput, while minimizing isobaric interferences, thereby providing information with regard to practical sample cohort size limitations of LC-MS for large cohort experiments. In addition to these fundamental analytical performance metrics, precision and linear dynamic ranges were also studied. An LC-MS configuration that encompasses the best combination of throughput and analytical accuracy for translational studies was chosen, despite the MS platforms giving similar quantitative performance, and instances were identified where alternative combinations were found to be beneficial. This configuration was utilized to demonstrate that proteolytically digested nondepleted samples from heart failure patients could be classified with good discriminative power using a subset of proteins previously suggested as candidate biomarkers for cardiovascular diseases.


Subject(s)
Mass Spectrometry/methods , Chromatography, Liquid/methods , Peptides/analysis , Peptides/chemistry , Reproducibility of Results , Translational Research, Biomedical
4.
Anal Bioanal Chem ; 408(3): 797-804, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26573169

ABSTRACT

Trimethylamine N-oxide (TMAO) has attracted interest as circulating levels have reported prognostic value in patients with cardiovascular conditions, such as heart failure. With continual advances in accurate mass measurements, robust methods that can employ the capabilities of time of flight mass spectrometers would offer additional utility in the analysis of complex clinical samples. A Waters Acquity UPLC was coupled to a Waters Synapt G2-S high-resolution mass spectrometer. TMAO was measured in plasma by stable-isotope dilution-hydrophilic interaction liquid chromatography-time of flight mass spectrometry with multiple reaction monitoring (LC-ToF-MRM). Two transitions were monitored: m/z 76.1 to 58.066/59.073 and m/z 85.1 to 66.116/68.130. The method was assessed for linearity, lower limits of detection and quantitation, and reproducibility. A selected cohort of patients with systolic heart failure (SHF; n = 43) and healthy controls (n = 42) were measured to verify the assay is suitable for the analysis of clinical samples. Quantitative analysis of TMAO using LC-ToF-MRM enabled linearity to be established between 0.1 and 75 µmol/L, with a lower limit of detection of 0.05 µmol/L. Relative standard deviations reported an inter-day variation of ≤20.8% and an intra-day variation of ≤11.4% with an intra-study quality control variation of 2.7%. Run times were 2.5 min. Clinical application of the method reported that TMAO in SHF was elevated compared to that of healthy controls (p < 0.0005). LC-ToF-MRM offers a highly selective method for accurate mass measurement of TMAO with rapid and reproducible results. Applicability of the method was shown in a selected cohort of patient samples.


Subject(s)
Cardiovascular Diseases/blood , Indicator Dilution Techniques , Methylamines/blood , Oxides/blood , Spectrometry, Mass, Electrospray Ionization/methods , Aged , Aged, 80 and over , Cardiovascular Diseases/diagnosis , Cohort Studies , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...